
The Java Programmer’s Phrase Book

Einar W. Høst and Bjarte M. Østvold

Norwegian Computing Center
{einarwh,bjarte}@nr.no

Abstract. Method names in Java are natural language phrases describ-
ing behaviour, encoded to make them easy for machines to parse. Pro-
grammers rely on the meaning encoded in method names to understand
code. We know little about the language used in this encoding, its rules
and structure, leaving the programmer without guidance in expressing
her intent. Yet the meaning of the method names — or phrases — is
readily available in the body of the methods they name. By correlat-
ing names and implementations, we can figure out the meaning of the
original phrases, and uncover the rules of the phrase language as well.
In this paper, we present an automatically generated proof-of-concept
phrase book for Java, based on a large software corpus. The phrase book
captures both the grammatical structure and the meaning of method
phrases as commonly used by Java programmers.

1 Introduction

Method identifiers play three roles in most programming languages. The first
is a technical one: method identifiers are unique labels within a class; strings of
characters that act as links, allowing us to unambiguously identify a piece of
code. If we want to invoke that piece of code, we refer to the label. The second
role is mnemonic. While we could, in theory, choose arbitrary labels for our
methods, this would be cumbersome when trying to remember the correct label
for the method we want to invoke. Hence methods are typically given labels
that humans can remember, leading us to refer to method identifiers also as
method names. Finally, method identifiers play a semantic role. Not only do we
want labels we can remember; we want them to express meaning or intent. This
allows us to recall what the method actually does. Unfortunately, we lack an
established term for this role — identifiers are not just names. Rather, they are
structured expressions of intent, composed of one or more fragments. Indeed they
are method phrases, utterances in natural language, describing the behaviour of
methods.

Consider, for instance, the following example, defining the Java method
findElementByID:

Element findElementByID(String id) {

for (Element e : this.elements) {

if (e.getID().equals(id)) {

2

return e;

}

}

return null;

}

We immediately observe that the form of the method phrase is somewhat
warped and mangled due to the hostile hosting environment. Since the phrase
must double as a unique label for the method, and to simplify parsing, the phrase
must be represented by a continuous strings of characters. But it is nevertheless
a phrase, and we have no problems identifying it as such. In a more friendly
environment, we would unmangle the phrase and simply write Find element by
ID. For instance, in the programming language Subtext1, the roles as links and
names are completely decoupled: the names are mere comments for the links.
This leaves the programmer with much greater flexibility when naming methods.
Edwards argues that “names are too rich in meaning to waste on talking to
compilers” [1].

Note that the phrase and the implementation of a method must be in har-
mony: we cannot arbitrarily change one without considering to change the other.
The phrase must remain a correct abstract description of the implementation of
the method, otherwise the programmer is lying! Therefore, if the implementation
is changed, the phrase may have to be changed to describe the new behaviour.
Conversely, if the phrase is changed, care must be taken to ensure that the im-
plementation fulfills the promise of the new phrase. Unfortunately, programmers
have no guidance besides their own intuition and experience to help make sure
that their programs are truthful in this sense. In particular, programmers lack
the ability to assess the quality of method phrases with regards to suitability,
accuracy and consistency.

Realizing that method names are really phrases, that is, expressions in natu-
ral language, allows us some philosophical insight into the relationship between
the method name and the method body or implementation. Frege distinguishes
between the sign — name, or combination of words —, the reference — the
object to which the sign refers — and the sense — our collective understanding
of the reference [2]. Note that the sense is distinct from what Frege calls the
idea, which is the individual understanding of the reference. Depending on the
insight of the individual, the idea (of which there are many) may be in various
degrees of harmony or conflict with the sense (of which there is only one).

In this light, the creation of a method is a way of expression where the pro-
grammer provides both the sign (the method name) and a manifestation of the
idea (the implementation). The tension between the individual idea and the sense
is what motivates our work: clearly it would be valuable to assist the program-
mer in minimizing that tension. Understanding the language of method phrases
is a first step towards providing serious, non-trivial assistance to programmers

1 http://subtextual.org

http://subtextual.org

3

in the task of naming. In the future, we plan to implement such assistance in a
tool.

We have previously shown how to create a semantics which captures our com-
mon interpretation, or sense, of the action verbs in method names [3]. Building
on this work, we use an augmented model for the semantics, and expand from in-
vestigating verbs to full method names, understood as natural language phrases.

The main contributions of this paper are as follows:

– A perspective on programming that treats method names formally as ex-
pressions in a restricted natural language.

– The identification of a restricted natural language, Programmer English, used
by Java programmers when writing the names of methods (Section 2.1).

– An approach to encoding the semantics of methods (Section 3.2), expanding
on our previous work.

– An algorithm for creating a relevant and useful phrase book for Java pro-
grammers (Section 4.2).

– A proof-of-concept phrase book for Java that shows the potential and prac-
ticality of our approach (see Section 5 for excerpts).

2 Conceptual Overview

Our goal is to describe the meaning and structure of method names as found
in “the real world” of Java programming, and present the findings in a phrase
book for programmers. Our approach is to compare method names with method
implementations in a large number of Java applications. In doing so, we are
inspired by Wittgenstein, who claimed that “the meaning of a word is its use in
the language” [4]. In other words, the meaning of natural language expressions
is established by pragmatically considering the contexts in which the expressions
are used.

2.1 Programmer English

Method names in Java are phrases written in a natural language that closely
resembles English. However, the language has important distinguishing char-
acteristics stemming from the context in which it is used, affecting both the
grammar and the vocabulary of the language.

The legacy of short names lingering from the days before support for auto-
matic name completion still influences programmers. This results in abbrevia-
tions and degenerate names with little grammatical structure. While increasing
focus on readability might have improved the situation somewhat, Java is still
haunted by this culture. A recent example is the name method, degenerate for
getName, defined for enum classes introduced in Java 5.0.

Futhermore, the vocabulary is filled with general computing terms, technol-
ogy acronyms, well-known abbreviations, generic programming terms and spe-
cial object-oriented terms. In addition, the vocabulary of any given application

4

is extended with domain terms, similar to the use of foreign words in regular
English. This vocabulary is mostly understandable to programmers, but largely
incomprehensible to the English-speaking layman.

We therefore use the term Programmer English to refer to the special dialect
of English found in Java method names. Of course, Programmer English is really
Java Programmer English, and other “Programmer Englishes” exist which might
exhibit quite different characteristics. For instance, Haskell Programmer English
is likely to be radically different. Concerning other object-oriented programming
languages, Ruby Programmer English probably shares some traits with Java Pro-
grammer English, and C# Programmer English is likely to be near-identical.

2.2 Requirements for The Phrase Book

The main requirements for a phrase book is that it be relevant and useful. For the
phrase book to be relevant, it must stem from “the trenches” of programming.
In other words, it must be based on real-world data (i.e. programs), and be
representative of how typical Java programmers express themselves.

The usefulness requirement is somewhat more subtle: what does it mean to be
useful? Certainly, the phrase book should have a certain amount of content, and
yet be wieldy, easy to handle for the reader. Hence, we want to be able to adjust
the number of phrases included in the phrase book. In addition, each phrase
must be useful in itself. We propose the following three requirements to ensure
the usefulness of phrases: 1) each phrase must have a description that matches
actual usage, 2) each phrase must have a well-understood semantics, and 3) each
phrase must be widely applicable. These are requirements for validity, precision
and ubiquity, respectively.

Since each Java application has its own specialized vocabulary, we must be
able to abstract away domain-specific words. The phrase book should therefore
contain both concrete phrases such as get-last-element and abstract ones such
as find-[noun]. We prefer concrete phrases since they are more directly applica-
ble, but need abstract phrases to fill out the picture and provide a richer phrase
book.

We also decide that the phrase book should be organized hierarchically, as a
tree. That way, the phrase book directly reflects and highlights the grammatical
structure of the phrases themselves. This also makes the phrase book easier to
browse. The phrases should therefore be organized as refinements of each other.
Since a phrase represents a set of methods, its refinements are a partitioning
of the set. Note that the partitioning is syntax-driven: we cannot choose freely
which methods to group together. At any given step, we can only choose refined
phrases supported by the grammar implicitly defined by the corpus.

2.3 Approach

Figure 1 provides an overview of our approach. The analysis consists of two
major phases: data preparation and phrase book generation.

5

CodeName
Software
Corpus

Method
Corpus

Phrase
Book

Phrase
Corpus

SemanticsPhrase

Describe
Phrase

Prep.
G
en.

semantic
abstraction

grammatical
analysis

refinequalifies?

Fig. 1. Overview of the approach.

In the preparation phase, we transform our corpus of Java applications into
an idealized corpus of methods. Each Java method is subject to two parallel
analyses. On one hand, we analyze the grammatical structure of the method
name. This analysis involves to decompose the name into individual words and
the part-of-speech tagging of those words. This allows us to abstract over the
method names and create phrases consisting of both concrete words and abstract
categories of words. On the other hand, we analyze the bytecode instructions of
the implementations, and derive an abstract semantics. We can then investi-
gate the semantics of the methods that share the same phrase, and use this to
characterize the phrase.

This is exactly what happens in the generation phase. We apply our recur-
sive phrase book generation algorithm on the corpus of methods. The algorithm
works by considering the semantics of gradually more refined phrases. The se-
mantics of a phrase is determined by the semantics of the individual methods
with names that match the phrase. If a phrase is found to be useful, it receives
a description in the phrase book. We generate a description by considering how
the phrase semantics compares to that of others. We then attempt to refine
the phrase further. When a phrase is found to be not useful, we terminate the
algorithm for that branch of the tree.

2.4 Definitions

We need some formal definitions to be used in the analysis of methods (Sect. 3)
and when engineering the phrase book (Sect. 4). First, we define a set A of

6

attributes. An attribute a ∈ A can be evaluated to a binary value b ∈ {0, 1}.
A method m has three features: a unique fingerprint u, a name n, and a list of
values b1, . . . , bn for each a ∈ A. These values are the semantics of the method.
Unique fingerprints ensure that a set made from arbitrary methods m1, . . . ,mk

always has k elements. The name n consists of one or more fragments f . Each
fragment is annotated with a tag t.

A phrase p is an abstraction over a method name. A phrase consists of one
or more parts. A part may be a fragment, a tag or a special wildcard symbol.
The wildcard symbol, written ∗, may only appear as the last part of a phrase. A
phrase that consists solely of fragments is concrete; all other phrases are abstract.
It should be clear that a concrete phrase, then, is the same as a method name.

A phrase captures a name if each individual part of the phrase captures each
fragment of the name. A fragment part captures a fragment if they are equal.
A tag part captures a fragment if it is equal to the fragment’s tag. A wildcard
part captures any remaining fragments in a name. A concrete phrase can only
capture a single name, whereas an abstract phrase can capture multiple names.
For instance, the phrase [verb]-valid-* captures names like is-valid, has-valid-
signature and so forth. The actual set of captured names is determined by the
corpus.

A corpus C is a set of methods. Implicitly, C defines a set N , consisting of
the names of the methods m ∈ C. A name corpus Cn is a set of methods with
the name n. A phrase corpus Cp is a set of methods whose names are captured
by the phrase p. The relative frequency value ξa(C) for an attribute a given a
corpus C is defined as:

ξa(C) def=
∑

m∈C bm

|C|
,

where bm is the binary value for the attribute a of method m. The semantics of a
corpus is defined as the list of frequency values for all a ∈ A, [ξa1(C), . . . , ξam(C)].
We write JpK for the semantics of a phrase, and define it as the semantics of the
corresponding phrase corpus.

If two methods m,m′ have the same values for all attributes we say that they
are attribute-value identical, denoted m ' m′. Using relation ' we can divide a
corpus C into a set of equivalence classes EC(C) = [m1]C , . . . , [mk]C , where [m]C
is defined as:

[m]C
def= {m′ ∈ C | m′ ' m}.

We simplify the notation to [m] when there can be no confusion about the
interpretation of C. Now we apply some information-theoretical concepts related
to entropy [5]. Let the probability mass function p([m]) of corpus C be defined
as:

p([m]) def=
|[m]|
|C|

, [m] ∈ EC(C).

7

We then define the entropy of corpus C as:

H(C) def= H
(
p([m1]

)
, . . . , p([mk])

)
.

Finally, we define the entropy of a phrase as the entropy of its phrase corpus.

3 Method Analysis

When programmers express themselves in Programmer English, they give both
the actual expression (the name) and their subjective interpretation of that ex-
pression (the implementation). In the terms of Frege, each method definition
represents both the sign and a manifestation of the programmer’s idea of what
the sign means. We therefore analyze each method in two ways: (a) a syntac-
tic analysis concerned with interpreting the name, and (b) a semantic analysis
concerned with interpreting the implementation. The input to the analyses is
a Java method as found in a Java class file, the output an idealized method as
defined in Sect. 2.4, consisting of fingerprint, name and semantics.

3.1 Syntactic Analysis of Method Names

Method names are not arbitrarily chosen; they have meaning and structure.
In particular, names consist of one or more words (which we call fragments)
put together to form phrases in Programmer English. We apply natural lan-
guage processing techniques [6], in particular part-of-speech tagging, to reveal
the grammatical structure of these phrases.

Decomposition of Method Names. Since whitespace is not allowed in iden-
tifiers, the Java convention is to use the transition from lower-case to upper-case
letters as delimiter between fragments. For example, a programmer expressing
the phrase “get last element” would encode it as getLastElement. Since we
want to analyze the method names as natural language expressions, we reverse
engineer this process to recover the original phrase. This involves decomposing
the Java method names into fragments.

Since we are focussed on the typical way of expression in Java, we discard
names that use any characters except letters and numbers. This includes names
using underscore rather than case transition as a delimiter between fragments.
Since less than 3% of the methods in the original corpus contain underscores,
this has minimal impact on the results. That way, we avoid having to invent
ad-hoc rules and heuristics such as delimiter precedence for handling method
names with underscores and case transition. For instance, programmers may
mix delimiters when naming test methods (e.g., test handlesCornerCase), use
underscores for private methods (e.g., findAccount) or in other special cases
(e.g., processDUP2 X2). Indeed, nearly half the names containing underscores
have an underscore as the first character.

8

Part-of-speech Tagging. The decomposed method name is fed to our part-of-
speech tagger (POS tagger), which marks each fragment in the method name with
a certain tag. Informally, part-of-speech tagging means identifying the correct
role of a word in a phrase or sentence.

Our POS tagger for method names is made simple, as the purpose is to pro-
vide a proof-of-concept, rather than create the optimal POS tagger for method
names in Java. While there exist highly accurate POS taggers for regular En-
glish, their performance on Programmer English is unknown. Manual inspection
of 500 tagged names taken from a variety of grammatical structures indicates
that our POS tagger has an accuracy above 97%.

The POS tagger uses a primitive tag set: verb, noun, adjective, adverb,
pronoun, preposition, conjunction, article, number, type and unknown.
Examples of unknown fragments are misspellings (”anonimous”), idiosyncra-
cies (”xget”) and composites not handled by our decomposer (”nocando”). Less
than 2% of the fragments in the corpus are unknown.

A fragment with a type tag has been identified as the name of a Java type.
We consider a Java type to be in scope for the method name if the type is used
in the method signature or body. This implies that the same method name can
be interpreted differently depending on context. For instance, the method name
getInputStream will be interpreted as the two fragments get-InputStream
if InputStream is a Java type in scope of the method name, and as the three
fragments get-input-stream otherwise. As illustrated by the example, we com-
bine fragments to match composite type names. Type name ambiguity is not a
problem for us, since we only need to know that a fragment refers to a type, not
which one.

Tagged
Phrase

Ambiguous
Phrase

Untagged
Phrase

find
tags

select
tags

Fig. 2. Overview of the POS tagging process.

The POS tagger operates in two steps, as shown in Fig. 2. First, we determine
the range of possible tags for the fragments in the phrase, then we select a tag for
each fragment. WordNet [7] is a core component of the first task. However, since
WordNet only handles the four word classes verbs, nouns, adjectives and adverbs,
we augment the results with a set of prepositions, pronouns, conjunctions and
articles as well. Moreover, it is common in programming to invent adjectives to
describe properties of entities, simply by suffixing a verb with “able”; for instance
“cloneable” and “queryable”. The POS tagger will identify these as adjectives,
if other attempts at tagging have failed. Finally, since Programmer English has

9

many technical and specialized terms not found in regular English, we have built
a dictionary of such terms. Examples include “encoder” and “optimizer” (nouns)
and “blit” and “refactor” (verbs). The dictionary also contains expansions for
many common abbreviations, such as “abbrev” for “abbreviation”.

The second step of the POS tagging is selection, which is necessary to re-
solve ambiguity. The tag selector is context-aware, in the sense that it takes into
account a fragment’s position in a phrase, as well as the possible tags of sur-
rounding fragments. For instance, the fragment default is tagged as adjective
in the phrase get-default-value, and as noun in the phrase get-default. Since
we know that method names tend to start with verbs, a fragment is somewhat
more likely to be tagged verb if it is the first fragment in the phrase. Also, some
unlikely interpretation alternatives are omitted because they are not common in
programming. For instance, we ignore the possibility of value being a verb.

3.2 Semantic Analysis of Method Implementations

The goal of the semantic analysis of the method implemenation is to derive a
model of the method’s behaviour. This model is an abstraction over the bytecode
instructions in the implementation. In Frege’s terms, we use the model to capture
the programmer’s idea of the method.

Attributes. In Sect. 2.4, we defined the semantics of a method m as a list
of binary attribute values. The attributes are predicates, formally defined as
conditions on Java bytecode. We have hand-crafted the attributes to capture
various aspects of the implementation. In particular, we look at control flow,
data flow and state manipulation, as well as the method signature. In addition,
we have created certain attributes that we believe are significant, but that fall
outside these categories.

The attributes are listen in Table 1. Each attribute is given a name and a
short description. The formal definitions of the attributes range in sophistication,
from checking for presence of certain bytecode instructions, to tracing the flow
of parameter and field values.

Attribute Dependencies. In our previous work, we used strictly orthogonal
attributes [3]. However, this sometimes forces us to choose between coarse and
narrow attributes. As an example, we would have to choose between common,
but not so distinguishing Reads field attribute, and the much more precise and
semantically laden Returns field value. We therefore allow non-orthogonal
attributes in our current work.

Table 2 lists the dependencies between the attributes. We see that they are
straight-forward to understand. For instance, it should be obvious that all meth-
ods that return a field value must (a) read a field and (b) return a value.

Note that there are more subtle interactions at work between the attributes
as well. For instance, Throws exception tends to imply Creates objects,
since the exception object must be created at some point. However, it is not an

10

Table 1. Attributes.

Control Flow

Contains loop
There is a control flow path that causes the same basic block to be
entered more than once.

Contains branch
There is at least one jump or switch instruction in the bytecode.

Multiple return points
There is more than one return instruction in the bytecode.

Is recursive
The method calls itself recursively.

Same name call
The method calls a different method with the same name.

Throws exception
The bytecode contains an ATHROW instruction.

Data Flow

Writes parameter value to field
A parameter value may be written to a field.

Returns field value
The value of a field may be used as the return value.

Returns parameter value
A parameter value may be used as the return value.

Local assignment
Use of local variables.

State Manipulation

Reads field
The bytecode contains a GETFIELD or GETSTATIC instruction.

Writes field
The bytecode contains a PUTFIELD or PUTSTATIC instruction.

Method Signature

Returns void
The method has no return value.

No parameters
The method has no parameters.

Is static
The method is static.

Miscellaneous

Creates objects
The bytecode contains a NEW instruction.

Run-time type check
The bytecode contains a CHECKCAST or INSTANCEOF instruction.

Table 2. Attribute dependencies.

Contains loop =⇒ Contains branch

Writes parameter value to field =⇒ Writes field ∧ ¬No parameters

Returns field value =⇒ ¬Returns void ∧ ¬Reads field

Returns parameter value =⇒ ¬Returns void ∧ ¬No parameters

11

absolute dependency, as rethrowing an exception does not mandate creating an
object.

Critique. We have constructed the set of attributes under two constraints:
our own knowledge of significant behaviour in Java methods and the relative
simplicity of our program analysis. While we believe that the attributes are
adequate for demonstration, we have no illusions that we have found the optimal
set of attributes. A more sophisticated program analysis might allow us to define
or approximate interesting attributes such as Pure function (signifying that the
method has no side-effects). It is also not clear that attributes are the best way to
model the semantics of methods — for instance, the structure of implementations
is largely ignored. However, the simplicity of attributes is also the strength of the
approach, in that we are able to reduce the vast space of possible implementations
to a small set of values that seem to capture their essence. This is important, as
it facilitates comparing and contrasting the semantics of methods described by
different phrases.

3.3 Phrase Semantics

The semantics of a single method captures the programmer’s subjective idea
of what a method phrase means. When we gather many such ideas, we can
approximate the sense of the phrase, that is, its objective meaning. We can
group ideas by their concrete method phrases (names) such as compare-to, or
by more abstract phrases containing tags, such as find-[type]-by-[noun].

Phrase Characterization. Just like other natural language expressions, a
phrase in Programmer English is only meaningful in contrast to other phrases.
The English word light would be hard to grasp without the contrast of dark ;
similarly, we understand a phrase like get-name by virtue that it has different
semantics from its opposite set-name, and also from all other phrases, most of
which are semantically unrelated, such as compare-to. Since the semantics JpK
of a phrase p is defined in terms of a list of attribute frequencies (see Sect. 2.4),
we can characterize p simply by noting how its individual frequencies deviates
from the average frequencies of the same kind.

For a given attribute a, the relative frequency ξa(Cn) for all names n ∈ N
lies within the boundaries 0 ≤ ξa(Cn) ≤ 1. We divide this distribution into five
named groups, as shown in Table 3. Each name is associated with a certain group
for a, depending on the value for ξa(n): the 5% of names with the lowest relative
frequencies end up in the “low extreme” group, and so forth. This is a conve-
nient way of mapping continuous values to discrete groups, greatly simplifying
comparison.

Taken together, the group memberships for attributes ai, . . . , ak becomes an
abstract characterization of a phrase, which can be used to generate a description
of it.

12

Table 3. Percentile groups for attribute frequencies.

< 5% Low extreme

< 25% Low

25% - 75% Unlabelled

> 75% High

> 95% High extreme

3.4 Method Delegation

The use of method delegation in Java programs — invoking other methods in-
stead of defining the behaviour locally — is a challenge for our analysis. The rea-
son is that a method implementation that delegates directly to another method
exposes no behaviour of its own, and so it “waters down” the semantics of the
method name.

There are two simple ways of handling delegation: inlining and exclusion.
Inlining essentially means copying the implementation of the called method into
the implementation of the calling method. There are several problems with inlin-
ing. First, it undermines the abstraction barrier between methods and violates
the encapsulation of behaviour. Second, it skews the analysis by causing the same
implementation to be analyzed more than once. We therefore prefer exclusion,
which means that delegating methods are omitted from the analysis. However,
what constitutes delegation is fuzzy: should we ignore methods that calculate
parameters passed to other methods, or methods that delegate to a sequence of
methods? For simplicity, we only identify and omit single, direct delegation with
an equal or reduced list of parameters.

4 Engineering the phrase book

This section describes the engineering efforts undertaken to produce the proof-
of-concept phrase book for Java programmers. In particular, we describe how
we meet the requirements outlined in Sect. 2.2, and take a closer look at the
algorithm used to generate the phrase book.

4.1 Meeting the Requirements

In Sect. 2.2, we mandated that the phrase book be relevant and useful.

Relevance We fulfill the relevance requirement by using a large corpus of
Java applications as data for our analysis. This ensures that the results reflect
actual real-world practice. The corpus is the same set of applications we used in
our previous work [3]. Since many applications rely on third-party libraries, the
corpus has been carefully pruned to ensure that each library is analyzed only
once. This is important to avoid skewing of the results: otherwise, we cannot be

13

certain that the semantics of a phrase reflects the cross-section of many different
implementations.

The corpus consists of 100 open-source applications and libraries from a
variety of domains: desktop applications, programmer tools, programming lan-
guages, language tools, middleware and frameworks, servers, software develop-
ment kits, XML tools and various common utilities. Some well-known examples
include the Eclipse integrated development environment, the Java software devel-
opment toolkit, the Spring application framework, the JUnit testing framework,
and the Azureus bittorrent client2. Combined, the applications in the corpus
contain more than one million methods.

Usefulness In order to produce a phrase book that is as useful as possible, we
want the phrase book to be short, easy to read, and containing only the most
useful phrases. Here, we present our translation of the qualitative usefulness
requirements into quantitative ones.

– Validity. Each phrase must represent at least 100 methods.
– Precision. Intuitively, precision means how consistently a phrase refers to

the same semantics. Since entropy measures the independence of attributes,
entropy is an inverse measurement of precision. Each phrase representing
a refinement of another phrase must therefore lead to decreased entropy,
corresponding to increased precision.

– Ubiquity. Each phrase must be present in at least half of the applications in
the corpus.

Tweaking the actual numbers in these criteria allows us to control the size
of the phrase book. The values we have chosen yields a phrase book containing
364 phrases. The ideal size of the phrase book is a matter of taste; we opt for a
relatively small one compared to natural-language dictionaries.

4.2 Generation Algorithm

Below, we present and explain the pseudo-code (Fig. 3) for the algorithm that
automatically generates the phrase book. Note that the pseudo-code glosses over
many details to highlight the essentials of the algorithm. For brevity, we omit
definitions for functions that are “self-explanatory”. The syntax is influenced by
Python, meaning that indentation is significant and used to group blocks.

The pseudo-code outlines a fairly simple recursive algorithm. The driving
function is refine, which generates a refinement of a phrase. Note that each
phrase implicitly defines a corpus of methods, so that a refinement of a phrase
also means a narrowing of the corpus.

First, we iterate over the tags in our tag set (see Sect. 3.1). For each tag, we
create a new phrase representing a refinement to only the methods whose names
2 Azureus is currently the most downloaded and actively developed application from

SourceForge.net.

14

refine(phrase):

for tag in tags:

t-phrase = phrase-append(phrase, tag)

if useful(t-phrase, phrase):

used-phrases = ()

for f-phrase in fragment-phrases(p, tag):

if useful(f-phrase, t-phrase):

used-phrases.add(f-phrase)

write-entry(f-phrase)

refine(f-phrase)

r-phrase = mark-special(t-phrase)

if useful(r-phrase, phrase):

write-entry(r-phrase)

refine(r-phrase)

Fig. 3. Pseudo-code for the phrase book generation algorithm

satisfy the new tag. We demand that this refinement be useful, or we ignore the
entire tag. The refinement is useful if it meets the criteria of the useful function.
This function embodies the criteria discussed in Sects. 2.2 and 4.1.

If the refinement is useful, we try to find even more useful refinements using
fragments instead of the tag. Assume that we are calling expand on the phrase
get-*. We expand the phrase with the tag noun, yielding the new phrase get-
[noun]-*. Finding the new phrase to be useful, we generate more concrete re-
finements such as get-name-* and get-customer-*. If they are useful, we call
the write-entry function, which generates a description that is included in the
phrase book, and recurse, by calling refine on the concrete refinement. Finally,
we examine the properties of the corpus of remnant methods; those that match
the tag phrase, but are not included in any of the useful concrete refinements. We
say that these methods are captured by a special phrase r-phrase. The r-phrase
is equal to the t-phrase, except that it potentially captures fewer method names,
and hence might represent a smaller corpus. For instance, if get-name-* is use-
ful and get-customer-* is not, then r-phrase captures the phrases captured by
get-[noun]-*, except those also captured by get-name-*. If r-phrase is useful,
it is included in the phrase book. Note that if no useful concrete refinements are
found, r-phrase degenerates to t-phrase.

5 Results

While the phrase book has been designed for brevity, it is still much too large
to be included in this paper. We therefore present some excerpts highlighting
different aspects. The full version is available at http://phrasebook.nr.no.
We also take a look at the distribution of grammatical structures, and using the
phrase book to guide naming.

http://phrasebook.nr.no

15

Terminology. Table 4 explains the basic terminology used in the phrase book.
In addition, we use the modifier comparatively to indicate that the frequency
is low despite being in the higher quantiles, or high despite being in the lower
quantiles. For instance, a phrase might denote methods that call themselves
recursively more often than average methods, even if the actual frequency might
be as low as 0.1.

Table 4. Phrase book terminology.

Phrase Meaning

Always The attribute value is always 1.
Very often Frequency in the high extreme percentile group.
Often Frequency in the high percentile group.
Rarely Frequency in the low percentile group.
Very rarely Frequency in the low extreme percentile group.
Never The attribute value is always 0.

Example Entry. To illustrate how the data uncovered by our analysis is pre-
sented in the phrase book, we show the entry for the phrase find-[type]. It is
an interesting example of a slightly abstract phrase with a clear meaning.

find-[type]. These methods very often contain loops, use local variables, have
branches and have multiple return points, and often throw exceptions, do
runtime type-checking or casting and are static. They rarely return void, write
parameter values to fields or call themselves recursively.

Each entry in the phrase book describes what signifies the corpus of methods
captured by the phrase; that is, how it differs from the average (Sect. 3.3). We
find no surprises in the distinguishing features of find-[type]; in fact, it is a
fairly accurate description of a typical implementation such as:

Person findPerson(String ssn) {

Iterator itor = list.iterator();

while (itor.hasNext()) {

Person p = (Person) itor.next();

if (p.getSSN().equals(ssn)) {

return p;

}

}

return null;

}

We iterate over a collection of objects (Contains loop), cast each object
to its proper type (Run-time type check) and store it in a variable (Local

16

assignment), and terminate early if we find it (Multiple returns). A com-
mon variation would be to throw an exception (Throws exception) instead of
returning null if the object could not be found.

Refinement. As explained in Sect. 4.1, the phrase book is engineered to yield
useful entries, understood as valid, precise and ubiquitous ones. The generation
algorithm has been designed to prefer concrete phrases over abstract ones, as
long as the criteria for usefulness are fulfilled.

One effect of this strategy is that the everyday “cliché” methods equals,
hashCode and toString defined on Object are not abstracted: they emerge as
the concrete phrases equals, hash-code and to-String. This is not surprising,
as the names are fixed and the semantics are well understood.

The algorithm’s ability to strike the right balance between concrete and ab-
stract phrases is further illustrated by the branch for the is-* phrase, shown in
Fig. 4.

Fig. 4. The is-* branch of phrases.

We see that the algorithm primarily generates abstract refinements for is-*;
one for each of the tags verb, noun, adjective and preposition. However, in
the case of adjective, two concrete instances are highlighted: is-empty-* and
is-valid-*. This matches nicely with our intuition that these represent common
method names. We write [/adjective] for the subsequent phrase to indicate
that it captures adjectives except the preceding “empty” and “valid”.

Grammar. We find that the vast majority of method phrases have quite de-
generate grammatical structures. By far the most common structure is [verb]-
[noun]. Furthermore, compound nouns in Programmer English, as in regular
English, are created by juxtaposing nouns. The situation becomes even more
extreme when we collapse these nouns into one, and introduce the tag noun+
to represent a compound noun. The ten most common grammatical structures
are listed in Table 5.

17

Table 5. Distribution of grammatical structures.

Structure Instances Percent

[verb]-[noun+] 422546 39.45%

[verb] 162050 15.13%

[verb]-[type] 78632 7.34%

[verb]-[adjective]-[noun+] 74277 6.93%

[verb]-[adjective] 28397 2.65%

[noun+] 26592 2.48%

[verb]-[noun+]-[type] 18118 1.69%

[adjective]-[noun+] 15907 1.48%

[noun+]-[verb] 14435 1.34%

[preposition]-[type] 13639 1.27%

Guidance. Perhaps the greatest promise of the phrase book is that it can be
used as guidance when creating and naming new methods. Each description
could be translated to a set of rules for a given phrase. An interactive tool,
e.g., an Eclipse plug-in, could use these rules to give warnings when a developer
breaches them.

As an example, consider the phrase equals, which the phrase book describes
as follows:

equals. These methods very often have parameters, call other methods with
the same name, do runtime type-checking or casting, have branches and have
multiple return points, and often use local variables. They never return field
values or return parameter values, and very rarely return void, write to fields,
write parameter values to fields or call themselves recursively, and rarely create
objects or throw exceptions. The phrase appears in most applications.

The extreme clauses are most interesting, because they represent the clearest
characteristics for the phrase. For instance, no programmer contributing to the
corpus has ever let an equals method return a value stored in a field — a strong
suggestion that you might not want to do so either! However, we note that the
phrase book reflects the actual use of phrases, not the ideal use. This means that
the description might capture systematic implementation problems; i.e., common
malpractice for a given phrase. We might look for clues in the negative clauses,
indicating rare — even suspicious — behaviour. For instance, we see that there
are equals methods that create objects and throw exceptions, which might be
considered dubious. More severely, recursion in an equals method sounds like
a possible bug. Indeed, inspection reveals an infinite recursive loop bug in an
equals method in version 1.0 of Groovy3.

We conclude that the rules uncovered by the phrase book appear to be use-
ful as input to a naming-assistance tool. However, the rules might need to be
tightened somewhat, to compensate for fallible implementations in the corpus.

3 http://groovy.codehaus.org/

http://groovy.codehaus.org/

18

After all, the corpus reflects the current state of affairs for naming, and the aim
of a naming-assistance tool would be to improve it.

6 Related Work

We build on our previous work [3], which defined semantics for action verbs,
the initial fragment of method names. We summarized the findings in The Pro-
grammer’s Lexicon, an automatically generated description of the most common
verbs in a large corpus of Java applications. The distinguishing characteristic of
our work, is that we compare the names and semantics of methods in a large
corpus of Java applications.

Other researchers have analyzed Java applications in order to describe typical
Java programmer practice. Collberg et al. [8] present a large set of low-level usage
statistics for a huge corpus of Java programs. Examples of statistics included are
the number of subclasses per class, the most common method signatures and
bytecode frequencies. Baxter et al. [9] have similar goals, in using statistics to
describe the anatomy of real-world Java programs. In particular, they investigate
the claim that many important relationships between software artifacts follow a
“power-law” distribution. However, none of these statistics are linked to names.

There have also been various kinds of investigations into identifiers, tradi-
tionally in the context of program comprehension. Lawrie et al. [10] study how
the quality of identifiers affect the understanding of source code. Caprile and
Tonella [11] investigate the structure of function identifiers as found in C pro-
grams. They build a dictionary of identifier fragments and propose a grammar
for identifiers, but make no attempt at defining identifier semantics. Antoniol et
al. [12] find that the names used in programming evolve more slowly than the
structures they represent. They argue that the discrepancy is due to lack of tool
support for name refactoring. In this work, names are linked to structures, but
not the semantics of the structures.

Lately, more interest can be seen in investigating and exploiting name seman-
tics. Singer et al. [13] share our ambition in ascribing semantics to names based
on how they are used. They analyze a corpus of real-world Java applications,
and find evidence of correlation between type name suffixes (nouns) and some of
the micro patterns described by Gil and Maman [14]. Micro patterns are formal,
traceable conditions defined on Java types.

Pollock et al. [15] investigate various ways of utilizing “natural language
clues” to guide program analysis. Shepherd et al. [16] apply method name anal-
ysis to aid in aspect mining. In particular, they investigate the relationships be-
tween verbs (actions) and nouns (types) in programs. The scattering of the same
verb throughout a program is taken as a hint of a possible cross-cutting concern.
Finally, Ma et al. [17] use identifier fragments to index software repositories,
to assist in querying for reusable components. These works involve exploiting
implicit name semantics, in that relationships between names are taken to be
meaningful. However, what the semantics are remains unknown. Our work is

19

different, in that we want to explicitly model and describe the semantics of each
name.

7 Conclusion

The names and implementations of methods are mutually dependent on each
other. The phrase book contains descriptions that captures the objective sense
of the phrases, that is, the common understanding among Java programmers of
what the phrases mean. We arrived at the sense by correlating over a million
method names and implementations in a large corpus of Java applications. By
using attributes, defined as predicates on Java bytecode, we modeled the seman-
tics of individual methods. By aggregating methods by the phrases that describe
them, we derived the semantics of the phrases themselves. From the semantics,
we generated the textual descriptions gathered in the phrase book.

We believe that further investigation into the relationship between names
and implementations can yield more valuable insight and contribute to improved
naming. Currently, we are refining our model of the semantics of methods, in
order to make it more sophisticated and precise. This will allow us to more
accurately describe the meaning of the phrases. An obvious enhancement is to
use a state-of-the-art static analysis tool to provide a richer, more descriptive
set of attributes. We are also considering developing a model for the semantics
that better captures the structure of the implementations. At an abstract level,
it might be possible to identify machine-traceable patterns for method imple-
mentations. Inspired by Singer et al. [13], then, we might look for correlation
between names and these patterns.

While we have shown that names do have grammatical structure, we believe
that the potential for natural language expression in names is under-utilized.
Indeed, by far the most common structure is the simple [verb]-[noun] struc-
ture. Longer, more complex names gives the possibility of much more precise
descriptions of the behaviour of methods. Improved tool support for verifying
name quality might motivate programmers to exploit this possibility to a greater
extent than at the present.

We are working on transforming the results presented in this paper into a
practical tool, supporting a much richer set of naming conventions than adher-
ence to simple syntactic rules such as the camel case convention. The tool will
warn against dissonance between name and implementation, and suggest two
paths to resolution: 1) select a more appropriate name from a list proposed by
the tool, or 2) perform one or more proposed changes to the implementation.

In a somewhat longer timeframe, the tool could be extended to support gram-
matical conventions as well. An example would be to warn against mixing verbose
and succinct naming styles. One might debate whether it is better to explicitly
mention types in method names (e.g., Customer findCustomerByOrder(Order))
or not (e.g., Customer find(Order)), but to mix both styles in the same ap-
plication is definitely confusing. Tool support could help achieve grammatical
consistency within the application.

20

References

1. Edwards, J.: Subtext: uncovering the simplicity of programming. [18] 505–518
2. Frege, G.: On sense and reference. In Geach, P., Black, M., eds.: Translations from

the Philosophical Writings of Gottlob Frege. Blackwell (1952) 56–78
3. Høst, E.W., Østvold, B.M.: The programmer’s lexicon, volume I: The verbs. In:

SCAM ’07: Proceedings of the Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation, Washington, DC, USA, IEEE Computer
Society (2007) 193–202

4. Wittgenstein, L.: Philosophical Investigations. Prentice Hall (1973)
5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. 2nd edn. Wiley

Series in Telecommunications. Wiley (2006)
6. Manning, C.D., Schuetze, H.: Foundations of Statistical Natural Language Pro-

cessing. MIT Press (1999)
7. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
8. Collberg, C., Myles, G., Stepp, M.: An empirical study of Java bytecode programs.

Software Practice and Experience 37(6) (2007) 581–641
9. Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H.,

Tempero, E.: Understanding the shape of Java software. In: Proceedings of the
21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland,
Oregon, USA, ACM (2006) 397–412

10. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: What’s in a name? a study of
identifiers. In: Proceedings of the 14th International Conference on Program Com-
prehension (ICPC 2006), 14-16 June 2006, Athens, Greece, IEEE Computer Society
(2006) 3–12

11. Caprile, B., Tonella, P.: Nomen est omen: Analyzing the language of function
identifiers. In: Sixth Working Conference on Reverse Engineering (WCRE ’99), 6-
8 October 1999, Atlanta, Georgia, USA, IEEE Computer Society (1999) 112–122

12. Antonial, G., Guéhéneuc, Y.G., Merlo, E., Tonella, P.: Mining the lexicon used by
programmers during sofware [sic] evolution. Proc. of the International Conference
on Software Maintenance (ICSM) (2007) 14–23

13. Singer, J., Kirkham, C.: Exploiting the correspondence between micro patterns
and class names. In: SCAM ’08: Proceedings of the Eight IEEE International
Working Conference on Source Code Analysis and Manipulation, IEEE Computer
Society (2008) To appear.

14. Gil, J., Maman, I.: Micro patterns in Java code. [18] 97–116
15. Pollock, L.L., Vijay-Shanker, K., Shepherd, D., Hill, E., Fry, Z.P., Maloor, K.:

Introducing natural language program analysis. In Das, M., Grossman, D., eds.:
PASTE, ACM (2007) 15–16

16. Shepherd, D., Pollock, L.L., Vijay-Shanker, K.: Towards supporting on-demand
virtual remodularization using program graphs. In Filman, R.E., ed.: AOSD, ACM
(2006) 3–14

17. Ma, H., Amor, R., Tempero, E.D.: Indexing the Java API using source code.
In: Australian Software Engineering Conference, IEEE Computer Society (2008)
451–460

18. OOPSLA 2005. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2005, October 16-20, 2005, San Diego, CA, USA, ACM (2005)

	The Java Programmer's Phrase Book
	Einar W. Høst cl@@auth, Bjarte M. Østvold

